Ideal theory on non-orientable Klein surfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Topological Field Theory on Non-Orientable Surfaces

The lattice definition of the two-dimensional topological quantum field theory [Fukuma, et al, Commun. Math. Phys. 161, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative ∗-algebras and the topological state sum invariants defined on such surfaces. The partition and n-point functio...

متن کامل

Counting unicellular maps on non-orientable surfaces

A unicellular map is the embedding of a connected graph in a surface in such a way that the complement of the graph is a topological disk. In this paper we give a bijective operation that relates unicellular maps on a nonorientable surface to unicellular maps of a lower topological type, with distinguished vertices. From that we obtain a recurrence equation that leads to (new) explicit counting...

متن کامل

Regular Maps on Non-orientable Surfaces

It is well known that regular maps exist on the projective plane but not on the Klein bottle, nor the non-orientable surface of genus 3. In this paper several infinite families of regular maps are constructed to show that such maps exist on non-odentable surfaces of over 77 per cent of all possible genera. Mathematics Subject Classification (1991): 05C25.

متن کامل

Matchings in Graphs on Non-orientable Surfaces

P.W. Kasteleyn stated that the number of perfect matchings in a graph embedding on a surface of genus g is given by a linear combination of 4 Pfafans of modi ed adjacencymatrices of the graph, but didn't actually give the matrices or the linear combination. We generalize this to enumerating the perfect matchings of a graph embedding on an arbitrary compact boundaryless 2-manifold S with a linea...

متن کامل

Immersions of Non-orientable Surfaces

Let F be a closed non-orientable surface. We classify all finite order invariants of immersions of F into R, with values in any Abelian group. We show they are all functions of the universal order 1 invariant that we construct as T ⊕ P ⊕Q where T is a Z valued invariant reflecting the number of triple points of the immersion, and P,Q are Z/2 valued invariants characterized by the property that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 1972

ISSN: 0004-2080

DOI: 10.1007/bf02384814